3.1.99 \(\int \frac {\sin (c+d x)}{x (a+b x^3)} \, dx\) [99]

Optimal. Leaf size=301 \[ \frac {\text {Ci}(d x) \sin (c)}{a}-\frac {\text {Ci}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}-\frac {\text {Ci}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}-\frac {\text {Ci}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}+\frac {\cos (c) \text {Si}(d x)}{a}+\frac {\cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 a}-\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a}-\frac {\cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a} \]

[Out]

cos(c)*Si(d*x)/a-1/3*cos(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Si(-(-1)^(1/3)*a^(1/3)*d/b^(1/3)+d*x)/a-1/3*cos(c-a^(
1/3)*d/b^(1/3))*Si(a^(1/3)*d/b^(1/3)+d*x)/a-1/3*cos(c-(-1)^(2/3)*a^(1/3)*d/b^(1/3))*Si((-1)^(2/3)*a^(1/3)*d/b^
(1/3)+d*x)/a+Ci(d*x)*sin(c)/a-1/3*Ci(a^(1/3)*d/b^(1/3)+d*x)*sin(c-a^(1/3)*d/b^(1/3))/a-1/3*Ci((-1)^(1/3)*a^(1/
3)*d/b^(1/3)-d*x)*sin(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))/a-1/3*Ci((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)*sin(c-(-1)^(2
/3)*a^(1/3)*d/b^(1/3))/a

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 301, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {3426, 3384, 3380, 3383} \begin {gather*} -\frac {\sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {CosIntegral}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a}-\frac {\sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 a}-\frac {\sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {CosIntegral}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a}+\frac {\cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 a}-\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}-\frac {\cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}+\frac {\sin (c) \text {CosIntegral}(d x)}{a}+\frac {\cos (c) \text {Si}(d x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]/(x*(a + b*x^3)),x]

[Out]

(CosIntegral[d*x]*Sin[c])/a - (CosIntegral[(a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - (a^(1/3)*d)/b^(1/3)])/(3*a) - (C
osIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x]*Sin[c + ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)])/(3*a) - (CosIntegral
[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)])/(3*a) + (Cos[c]*SinIntegral[d*
x])/a + (Cos[c + ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x])/(3*a) - (C
os[c - (a^(1/3)*d)/b^(1/3)]*SinIntegral[(a^(1/3)*d)/b^(1/3) + d*x])/(3*a) - (Cos[c - ((-1)^(2/3)*a^(1/3)*d)/b^
(1/3)]*SinIntegral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x])/(3*a)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3426

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c +
 d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sin (c+d x)}{x \left (a+b x^3\right )} \, dx &=\int \left (\frac {\sin (c+d x)}{a x}-\frac {b x^2 \sin (c+d x)}{a \left (a+b x^3\right )}\right ) \, dx\\ &=\frac {\int \frac {\sin (c+d x)}{x} \, dx}{a}-\frac {b \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx}{a}\\ &=-\frac {b \int \left (\frac {\sin (c+d x)}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\sin (c+d x)}{3 b^{2/3} \left (-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\sin (c+d x)}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}\right ) \, dx}{a}+\frac {\cos (c) \int \frac {\sin (d x)}{x} \, dx}{a}+\frac {\sin (c) \int \frac {\cos (d x)}{x} \, dx}{a}\\ &=\frac {\text {Ci}(d x) \sin (c)}{a}+\frac {\cos (c) \text {Si}(d x)}{a}-\frac {\sqrt [3]{b} \int \frac {\sin (c+d x)}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\sqrt [3]{b} \int \frac {\sin (c+d x)}{-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\sqrt [3]{b} \int \frac {\sin (c+d x)}{(-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}\\ &=\frac {\text {Ci}(d x) \sin (c)}{a}+\frac {\cos (c) \text {Si}(d x)}{a}-\frac {\left (\sqrt [3]{b} \cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}+\frac {\left (\sqrt [3]{b} \cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\left (\sqrt [3]{b} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\sin \left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{(-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\left (\sqrt [3]{b} \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\left (\sqrt [3]{b} \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}-\frac {\left (\sqrt [3]{b} \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )\right ) \int \frac {\cos \left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{(-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a}\\ &=\frac {\text {Ci}(d x) \sin (c)}{a}-\frac {\text {Ci}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}-\frac {\text {Ci}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}-\frac {\text {Ci}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 a}+\frac {\cos (c) \text {Si}(d x)}{a}+\frac {\cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 a}-\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a}-\frac {\cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.
time = 0.22, size = 206, normalized size = 0.68 \begin {gather*} \frac {-i \text {RootSum}\left [a+b \text {$\#$1}^3\&,\cos (c+d \text {$\#$1}) \text {Ci}(d (x-\text {$\#$1}))-i \text {Ci}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})-i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))\&\right ]+i \text {RootSum}\left [a+b \text {$\#$1}^3\&,\cos (c+d \text {$\#$1}) \text {Ci}(d (x-\text {$\#$1}))+i \text {Ci}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})+i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))\&\right ]+6 \text {Ci}(d x) \sin (c)+6 \cos (c) \text {Si}(d x)}{6 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]/(x*(a + b*x^3)),x]

[Out]

((-I)*RootSum[a + b*#1^3 & , Cos[c + d*#1]*CosIntegral[d*(x - #1)] - I*CosIntegral[d*(x - #1)]*Sin[c + d*#1] -
 I*Cos[c + d*#1]*SinIntegral[d*(x - #1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)] & ] + I*RootSum[a + b*#1^3 &
, Cos[c + d*#1]*CosIntegral[d*(x - #1)] + I*CosIntegral[d*(x - #1)]*Sin[c + d*#1] + I*Cos[c + d*#1]*SinIntegra
l[d*(x - #1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)] & ] + 6*CosIntegral[d*x]*Sin[c] + 6*Cos[c]*SinIntegral[d
*x])/(6*a)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 88, normalized size = 0.29

method result size
derivativedivides \(-\frac {\munderset {\textit {\_R1} =\RootOf \left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (-\sinIntegral \left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\cosineIntegral \left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{3 a}+\frac {\sinIntegral \left (d x \right ) \cos \left (c \right )+\cosineIntegral \left (d x \right ) \sin \left (c \right )}{a}\) \(88\)
default \(-\frac {\munderset {\textit {\_R1} =\RootOf \left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (-\sinIntegral \left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\cosineIntegral \left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{3 a}+\frac {\sinIntegral \left (d x \right ) \cos \left (c \right )+\cosineIntegral \left (d x \right ) \sin \left (c \right )}{a}\) \(88\)
risch \(-\frac {i \left (\munderset {\textit {\_R1} =\RootOf \left (-3 i \textit {\_Z}^{2} b c -i a \,d^{3}+i b \,c^{3}+b \,\textit {\_Z}^{3}-3 b \,c^{2} \textit {\_Z} \right )}{\sum }{\mathrm e}^{\textit {\_R1}} \expIntegral \left (1, -i d x -i c +\textit {\_R1} \right )\right )}{6 a}+\frac {i {\mathrm e}^{i c} \expIntegral \left (1, -i d x \right )}{2 a}+\frac {i \left (\munderset {\textit {\_R1} =\RootOf \left (-3 i \textit {\_Z}^{2} b c -i a \,d^{3}+i b \,c^{3}+b \,\textit {\_Z}^{3}-3 b \,c^{2} \textit {\_Z} \right )}{\sum }{\mathrm e}^{-\textit {\_R1}} \expIntegral \left (1, i d x +i c -\textit {\_R1} \right )\right )}{6 a}-\frac {{\mathrm e}^{-i c} \pi \,\mathrm {csgn}\left (d x \right )}{2 a}+\frac {{\mathrm e}^{-i c} \sinIntegral \left (d x \right )}{a}-\frac {i {\mathrm e}^{-i c} \expIntegral \left (1, -i d x \right )}{2 a}\) \(192\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)/x/(b*x^3+a),x,method=_RETURNVERBOSE)

[Out]

-1/3/a*sum(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d*x-_R1+c)*sin(_R1),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3
))+1/a*(Si(d*x)*cos(c)+Ci(d*x)*sin(c))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)/((b*x^3 + a)*x), x)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.40, size = 314, normalized size = 1.04 \begin {gather*} \frac {-i \, {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} - i \, c\right )} + i \, {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} + i \, c\right )} - i \, {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} - i \, c\right )} + i \, {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} + i \, c\right )} - 3 i \, {\rm Ei}\left (i \, d x\right ) e^{\left (i \, c\right )} + 3 i \, {\rm Ei}\left (-i \, d x\right ) e^{\left (-i \, c\right )} + i \, {\rm Ei}\left (i \, d x + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (i \, c - \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )} - i \, {\rm Ei}\left (-i \, d x + \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (-i \, c - \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )}}{6 \, a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x/(b*x^3+a),x, algorithm="fricas")

[Out]

1/6*(-I*Ei(-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) - I*c) +
I*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) + I*c) - I*Ei(
-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) - I*c) + I*Ei(I*d*x
+ 1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) + I*c) - 3*I*Ei(I*d*x)*e^
(I*c) + 3*I*Ei(-I*d*x)*e^(-I*c) + I*Ei(I*d*x + (-I*a*d^3/b)^(1/3))*e^(I*c - (-I*a*d^3/b)^(1/3)) - I*Ei(-I*d*x
+ (I*a*d^3/b)^(1/3))*e^(-I*c - (I*a*d^3/b)^(1/3)))/a

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sin {\left (c + d x \right )}}{x \left (a + b x^{3}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x/(b*x**3+a),x)

[Out]

Integral(sin(c + d*x)/(x*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x/(b*x^3+a),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)/((b*x^3 + a)*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sin \left (c+d\,x\right )}{x\,\left (b\,x^3+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)/(x*(a + b*x^3)),x)

[Out]

int(sin(c + d*x)/(x*(a + b*x^3)), x)

________________________________________________________________________________________